77 research outputs found

    The immune system and other cognitive systems

    Get PDF
    In the following pages we propose a theory on cognitive systems and the common strategies of perception, which are at the basis of their function. We demonstrate that these strategies are easily seen to be in place in known cognitive systems such as vision and language. Furthermore we show that taking these strategies into consideration implies a new outlook on immune function calling for a new appraisal of the immune system as a cognitive system

    The Immune System Computes the State of the Body: Crowd Wisdom, Machine Learning, and Immune Cell Reference Repertoires Help Manage Inflammation

    Get PDF
    Here, we outline an overview of the mammalian immune system that updates and extends the classical clonal selection paradigm. Rather than focusing on strict self-not-self discrimination, we propose that the system orchestrates variable inflammatory responses that maintain the body and its symbiosis with the microbiome while eliminating the threat from pathogenic infectious agents and from tumors. The paper makes four points: The immune system classifies healthy and pathologic states of the body—including both self and foreign elements—by deploying individual lymphocytes as cellular computing machines; immune cells transform input signals from the body into an output of specific immune reactions.Rather than independent clonal responses, groups of individually activated immune-system cells co-react in lymphoid organs to make collective decisions through a type of self-organizing swarm intelligence or crowd wisdom.Collective choices by swarms of immune cells, like those of schools of fish, are modified by relatively small numbers of individual regulators responding to shifting conditions—such collective inflammatory responses are dynamically responsive.Self-reactive autoantibody and T-cell receptor (TCR) repertoires shared by healthy individuals function in a biological version of experience-based supervised machine learning. Immune system decisions are primed by formative experience with training sets of self-antigens encountered during lymphocyte development; these initially trained T cell and B cell repertoires form a Wellness Profile that then guides immune responses to test sets of antigens encountered later. This experience-based machine learning strategy is analogous to that deployed by supervised machine-learning algorithms.We propose experiments to test these ideas. This overview of the immune system bears clinical implications for monitoring wellness and for treating autoimmune disease, cancer, and allograft reactions

    Emergent Dynamics of Thymocyte Development and Lineage Determination

    Get PDF
    Experiments have generated a plethora of data about the genes, molecules, and cells involved in thymocyte development. Here, we use a computer-driven simulation that uses data about thymocyte development to generate an integrated dynamic representation—a novel technology we have termed reactive animation (RA). RA reveals emergent properties in complex dynamic biological systems. We apply RA to thymocyte development by reproducing and extending the effects of known gene knockouts: CXCR4 and CCR9. RA simulation revealed a previously unidentified role of thymocyte competition for major histocompatability complex presentation. We now report that such competition is required for normal anatomical compartmentalization, can influence the rate of thymocyte velocities within chemokine gradients, and can account for the disproportion between single-positive CD4 and CD8 lineages developing from double-positive precursors

    Detecting Cancer Gene Networks Characterized by Recurrent Genomic Alterations in a Population

    Get PDF
    High resolution, system-wide characterizations have demonstrated the capacity to identify genomic regions that undergo genomic aberrations. Such research efforts often aim at associating these regions with disease etiology and outcome. Identifying the corresponding biologic processes that are responsible for disease and its outcome remains challenging. Using novel analytic methods that utilize the structure of biologic networks, we are able to identify the specific networks that are highly significantly, nonrandomly altered by regions of copy number amplification observed in a systems-wide analysis. We demonstrate this method in breast cancer, where the state of a subset of the pathways identified through these regions is shown to be highly associated with disease survival and recurrence

    Network Representation of T-Cell Repertoire— A Novel Tool to Analyze Immune Response to Cancer Formation

    Get PDF
    The T cell repertoire potentially presents complexity compatible, or greater than, that of the human brain. T cell based immune response is involved with practically every part of human physiology, and high-throughput biology needed to follow the T-cell repertoire has made great leaps with the advent of massive parallel sequencing [1]. Nevertheless, tools to handle and observe the dynamics of this complexity have only recently started to emerge [e.g., 2, 3, 4] in parallel with sequencing technologies. Here, we present a network-based view of the dynamics of the T cell repertoire, during the course of mammary tumors development in a mouse model. The transition from the T cell receptor as a feature, to network-based clustering, followed by network-based temporal analyses, provides novel insights to the workings of the system and provides novel tools to observe cancer progression via the perspective of the immune system. The crux of the approach here is at the network-motivated clustering. The purpose of the clustering step is not merely data reduction and exposing structures, but rather to detect hubs, or attractors, within the T cell receptor repertoire that might shed light on the behavior of the immune system as a dynamic network. The Clone-Attractor is in fact an extension of the clone concept, i.e., instead of looking at particular clones we observe the extended clonal network by assigning clusters to graph nodes and edges to adjacent clusters (editing distance metric). Viewing the system as dynamical brings to the fore the notion of an attractors landscape, hence the possibility to chart this space and map the sample state at a given time to a vector in this large space. Based on this representation we applied two different methods to demonstrate its effectiveness in identifying changes in the repertoire that correlate with changes in the phenotype: (1) network analysis of the TCR repertoire in which two measures were calculated and demonstrated the ability to differentiate control from transgenic samples, and, (2) machine learning classifier capable of both stratifying control and trangenic samples, as well as to stratify pre-cancer and cancer samples

    The PathOlogist: an automated tool for pathway-centric analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The PathOlogist is a new tool designed to transform large sets of gene expression data into quantitative descriptors of pathway-level behavior. The tool aims to provide a robust alternative to the search for single-gene-to-phenotype associations by accounting for the complexity of molecular interactions.</p> <p>Results</p> <p>Molecular abundance data is used to calculate two metrics - 'activity' and 'consistency' - for each pathway in a set of more than 500 canonical molecular pathways (source: Pathway Interaction Database, <url>http://pid.nci.nih.gov</url>). The tool then allows a detailed exploration of these metrics through integrated visualization of pathway components and structure, hierarchical clustering of pathways and samples, and statistical analyses designed to detect associations between pathway behavior and clinical features.</p> <p>Conclusions</p> <p>The PathOlogist provides a straightforward means to identify the functional processes, rather than individual molecules, that are altered in disease. The statistical power and biologic significance of this approach are made easily accessible to laboratory researchers and informatics analysts alike. Here we show as an example, how the PathOlogist can be used to establish pathway signatures that robustly differentiate breast cancer cell lines based on response to treatment.</p

    System-wide Analysis of the T Cell Response

    Get PDF
    SummaryThe T cell receptor (TCR) controls the cellular adaptive immune response to antigens, but our understanding of TCR repertoire diversity and response to challenge is still incomplete. For example, TCR clones shared by different individuals with minimal alteration to germline gene sequences (public clones) are detectable in all vertebrates, but their significance is unknown. Although small in size, the zebrafish TCR repertoire is controlled by processes similar to those operating in mammals. Thus, we studied the zebrafish TCR repertoire and its response to stimulation with self and foreign antigens. We found that cross-reactive public TCRs dominate the T cell response, endowing a limited TCR repertoire with the ability to cope with diverse antigenic challenges. These features of vertebrate public TCRs might provide a mechanism for the rapid generation of protective T cell immunity, allowing a short temporal window for the development of more specific private T cell responses
    corecore